Intercomparison of Rain Gauge, Radar, and Satellite-Based Precipitation Estimates with Emphasis on Hydrologic Forecasting

نویسندگان

  • KORAY K. YILMAZ
  • TERRI S. HOGUE
  • SOROOSH SOROOSHIAN
  • HOSHIN V. GUPTA
  • THORSTEN WAGENER
چکیده

This study compares mean areal precipitation (MAP) estimates derived from three sources: an operational rain gauge network (MAPG), a radar/gauge multisensor product (MAPX), and the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) satellitebased system (MAPS) for the time period from March 2000 to November 2003. The study area includes seven operational basins of varying size and location in the southeastern United States. The analysis indicates that agreements between the datasets vary considerably from basin to basin and also temporally within the basins. The analysis also includes evaluation of MAPS in comparison with MAPG for use in flow forecasting with a lumped hydrologic model [Sacramento Soil Moisture Accounting Model (SAC-SMA)]. The latter evaluation investigates two different parameter sets, the first obtained using manual calibration on historical MAPG, and the second obtained using automatic calibration on both MAPS and MAPG, but over a shorter time period (23 months). Results indicate that the overall performance of the model simulations using MAPS depends on both the bias in the precipitation estimates and the size of the basins, with poorer performance in basins of smaller size (large bias between MAPG and MAPS) and better performance in larger basins (less bias between MAPG and MAPS). When using MAPS, calibration of the parameters significantly improved the model performance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sensitivity of Distributed Hydrologic Simulations to Ground and Satellite Based Rainfall Products

In this study, seven precipitation products (rain gauges, NEXRAD MPE, PERSIANN 0.25 degree, PERSIANN CCS-3hr, PERSIANN CCS-1hr, TRMM 3B42V7, and CMORPH) were used to force a physically-based distributed hydrologic model. The model was driven by these products to simulate the hydrologic response of a 1232 km watershed in the Guadalupe River basin, Texas. Storm events in 2007 were used to analyze...

متن کامل

Radar andMultisensor Precipitation Estimation Techniques in National Weather Service Hydrologic Operations

This paper describes techniques used operationally by the National Weather Service (NWS) to prepare gridded multisensor (gauge, radar, and satellite) quantitative precipitation estimates (QPEs) for input into hydrologic forecast models and decisionmaking systems for river forecasting, flood and flash flood warning, and other hydrologic monitoring purposes. Advanced hydrologic prediction techniq...

متن کامل

Multiple-Timescale Intercomparison of Two Radar Products and Rain Gauge Observations over the Arkansas–Red River Basin

A detailed intercomparison was performed for the period January 1998–June 1999 of three different sets of rainfall observations over the watershed covered by the National Weather Service Arkansas–Red Basin River Forecast Center (ABRFC). The rainfall datasets were 1) hourly 4-km-resolution ABRFC-produced P1 estimates, 2) 15-min 2-km resolution NOWrad estimates produced and marketed by Weather Se...

متن کامل

Hydrologic Evaluation of Rainfall Estimates from Radar, Satellite, Gauge, and Combinations on Ft. Cobb Basin, Oklahoma

This study evaluates rainfall estimates from the Next Generation Weather Radar (NEXRAD), operational rain gauges, Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA), and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks Cloud Classification System (PERSIANN-CCS) in the context as inputs to a calibrated, distributed hy...

متن کامل

Uncertainty quantification of satellite precipitation estimation and Monte Carlo assessment of the error propagation into hydrologic response

[1] The aim of this paper is to foster the development of an end-to-end uncertainty analysis framework that can quantify satellite-based precipitation estimation error characteristics and to assess the influence of the error propagation into hydrological simulation. First, the error associated with the satellite-based precipitation estimates is assumed as a nonlinear function of rainfall space-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005